Build the Common Data Language with the Metrics Platform Start Now
Kyligence Zen Kyligence Zen
Kyligence Enterprise Kyligence Enterprise
Cloud
Services
By Use Cases
By BI Tools
Customers
Resources
Apache Kylin
About
Partners
This article will help you to understand the deployment of OLAP on top of Azure, including data sources, features, benefits, and prerequisites. The combination of features creates a number of different cost and usage options and, depending on your needs, you can create the right OLAP on Azure solution for your organization.
Online analytical processing (OLAP) is a system for performing multi-dimensional analysis at high speeds on large volumes of data, typically sourced from a data warehouse, data mart, or some other centralized data store. OLAP is ideal for data mining, business intelligence, and complex analytical calculations, as well as business reporting functions like financial analysis, budgeting, and sales forecasting.
Currently firms have two options to implement a data warehouse: one is on-premises relational database management system (RDBMS)-based, and the other is cloud-native.
An RDBMS-based data warehouse is a mature product and proven methodology that can meet an organization’s data management and analysis needs when using relatively small data volumes. However, it relies heavily on proprietary on-premises servers, which come at a high cost and make it difficult to scale. And, once you decide on a proprietary product from a specific vendor, options for future migration are limited and costs can be very high.
In Azure, data stored in online transaction processing (OLTP) systems (e.g. Azure SQL Database) is replicated to OLAP systems (e.g. Azure Analysis Services). Data exploration and visualization tools (e.g. Power BI, Excel, and third-party options) connect to the Analysis Services server, allowing users to understand the modeled data in an interactive and visually rich way. Data flow from OLTP to OLAP is typically arranged using SQL Server Integration Services (SSIS) or the Azure Data Factory.
the following data stores all meet core OLAP requirements:
SQL Server Analysis Services (SSAS) provide OLAP and data mining capabilities for business intelligence applications. SSAS can be installed on a local server or on a host within a virtual machine in Azure.
Azure Analysis Services is a fully managed service that provides the same key functionality as SSAS. Azure Analysis Services supports connections to a variety of data sources in the cloud, and local data sources in the organization.
A cloud-native data warehouse in Azure achieves the balance between operation efficiency and cost. With one-click deployment, managed operation, and on-demand scaling, it greatly lowers the total cost of ownership (TCO). But cloud-native data warehouses still suffer from a prolonged data development cycle. Here is a typical development workflow:
Despite the lengthy development process, the solution cannot be directly reused, and labor costs increase with business growth. Fortunately, organizations that choose to address their analytics needs by using Kyligence’s OLAP on Azure can avoid these shortcomings and achieve more consistent and efficient results at a lower TCO.
Kyligence is changing the game by offering a way for operations engineers, data engineers, and data analysts to increase their productivity and liberate themselves from legacy data warehouse solutions. Harnessing cloud-native computing and storage resources, Kyligence enables fast, elastic, and cost-effective analysis innovation with any data lake and at any scale. Kyligence's AI-augmented engine detects patterns from the most frequently asked business queries, builds governed data marts automatically, and ensures metrics consistency on the data lake to optimize data pipelines and avoid an excessive number of tables.
OLAP on Azure-based applications have a variety of enterprise-class features. Combining the above best practices, Kyligence’s OLAP on Azure solution delivers four compelling factors to consider for implementing OLAP on Azure:
Auto scaling
By separating computing and storage, OLAP on Azure offers a low-cost auto-scaling solution to satisfy ever-growing data analytics demands.
High performance query response
OLAP on Azure provides high-performance, precomputed result sets that deliver sub-second query response times against very large datasets.
High compatibility
OLAP on Azure is compatible with ANSI SQL specifications, and provides a standard SQL query interface.
Dimensional Modeling
Although Kimball's dimensional modeling has a high learning threshold, cloud-based solutions can simplify dimensional modeling through the power of AI.
Front end support
With REST API, JDBC Driver, and ODBC Driver, OLAP on Azure can easily integrate with third-party applications, such as Tableau, Power BI, and other data analysis applications.
Security and reliability
With private network and full SSL encryption links, OLAP on Azure maximizes data security and reliability together with security group strategy on the cloud.
There are two typical use cases to consider when evaluating OLAP on Azure.
In the context of cloud migration, enterprises often choose object storage of high reliability and low cost as a single data storage pool to store their structured and unstructured data.
Kyligence Cloud supports seamless integration with object storage from different cloud vendors to provide a single source of truth. Computing resources can be independently applied to applications on data lakes. What’s more, Kyligence Cloud also supports on-demand start-stop to help lower TCO.
Azure Analysis Services performs well with small-scale data, but may become slow when using massive data volumes, or in high-concurrency scenarios, because of its scale-up architecture.
Kyligence Cloud fully utilizes separating compute-and-storage design. When facing high-concurrency analytics requests, Kyligence Cloud performs auto scaling of computing and storage resources to achieve sub-second response times.
If you want to increase the efficiency of your organization’s analytics with Enterprise OLAP on Azure, why not experience Kyligence's OLAP on Azure solution for yourself? You can try us for free with a trial Test Drive; or place a self-service order through the Azure marketplace.
For more information about OLAP on Azure, read about how to Accelerate BI on Big Data with Kyligence, learn more about Kyligence for Azure, or contact us directly with questions specific to your organization’s needs.
Read on to learn the key competencies and critical features to look for when evaluating a semantic layer offering for your BI tool.
Kyligence Zen intelligently manages data in the retail industry. Read to learn how to develop the "North Star Metric" system to track goals and progress.
What's OLAP on big data? What're its benefits? Here's everything you need to know about OLAP.
Learn how one big fast-food brand leveraged Kyligence capabilities and implemented precision marketing to maximize profit opportunities.
Come to see the Next Generation of SQL Query Engine
In this article, we’ll dive into the unified Metrics Platform at Beike, introduce Beike’s practice of building the Metrics Platform infrastructure using Apache Kylin and some real use cases at Beike.
Learn Kyligence Cloud model design principles and how to use Kyligence Cloud to build models.
Already have an account? Click here to login
预约演示,您将获得
完整的产品体验
从数据导入、建模到分析的全流程操作演示。
行业专家解惑
与资深行业专家的交流机会,解答您的个性化问题。
您还可以在云平台中 部署 Kyligence
直接获得 30 天免费试用
请填写真实信息,我们会在 1-2 个工作日内电话与您联系。