Meet Your AI Copilot fot Data Learn More
Your AI Copilot for Data
Kyligence Zen Kyligence Zen
Kyligence Enterprise Kyligence Enterprise
Metrics Platform
OLAP Platform
Customers
Definitive Guide to Decision Intelligence
Recommended
Resources
Apache Kylin
About
Partners
In today's business landscape, every individual is potentially a data specialist, regardless of their official job title. From accountants to engineers, professionals across various domains are leveraging data to glean critical insights. This evolving role, known as a citizen data scientist, blends both art and science in data interaction. Let's explore the nuances of this role and how it is reshaping the business analytics landscape.
According to Gartner, "A citizen data scientist is someone who creates or generates models using advanced diagnostic analytics or predictive and prescriptive capabilities, but whose primary job function is outside the field of statistics and analytics."
But what empowers a citizen data scientist to leverage data and analytics for insightful decision-making effectively? The answer lies in three fundamental elements:
These elements help to tackle complex data study needs, letting business folks quickly and easily find solutions to important questions.
A data scientist is a professional with expertise in various domains, including statistics, mathematics, computer science, and domain-specific knowledge. They often use programming languages such as Python or R, advanced statistical and machine learning techniques, and deeply understand data manipulation, data visualization, and data engineering.
The main differences between data scientists and citizen data scientists are their level of expertise, responsibilities, and the tools they use. Data scientists are highly skilled professionals who work with complex data problems, while citizen data scientists are non-experts who use simplified tools to perform basic data analysis tasks within their specific domain.
The terms 'citizen data scientist' and 'citizen data analyst' are often used interchangeably to describe individuals in organizations who use data to inform decision-making despite not having formal training. The primary distinction between the two lies in the level of technical expertise and the complexity of tasks they undertake.
What are the solution patterns to support citizen data scientists working efficiently in organizations? Firstly, the right data is required for good insights and not necessarily more data. The right data in a domain-related analytics context has three main characteristics.
Fundamentally, analytics is using data to answer the right questions about the future state. Invariably, insights derived are dependent on the response (effect) and explanatory (cause) variables, and these variables are known as features or dimensions. Dimensions provide context on the measures such as price, quantity, and cycle time associated with the business process.
Up to 80% of the data captured in business enterprises is unstructured data. Examples include documents, video, audio, images, and so on. Unstructured data is of little value for the analytics algorithms as the unstructured data do not have a predefined data model, which is required for analysis and data processing.
Business processes inherently have some degree of variation, and this variation is reflected in the data captured. Variation in data makes it difficult for the analytics algorithms to make timely and accurate predictions.
The second component in enabling Citizen Data Scientists is the self-service analytics platform. The self-service analytics platform like Kyligence Zen enables business professionals to perform queries and generate insights with minimal IT support. A robust self-service analytics platform in the analytics and citizen data scientists context should support these key features.
An analytics platform is only as valuable as the data that is available to it.
The self-service analytics platform needs to have a few important features. First, it should connect easily to existing data sources. These sources could be the main database, such as a data warehouse, or record systems like ERP or CRM.
Next, it doesn't matter where these data sources are located. They could be on-premise, in the cloud, or on a hybrid-cloud setup.
Lastly, the platform should allow for simple management of various tasks. These tasks include organizing data indexes for quick searches, handling data loads, and updating data regularly.
Getting useful and accurate insights depends on the quality and freshness of the data. Both of these aspects are at risk if data is stored in isolated and inaccessible compartments, known as silos.
A self-service analytics platform that is unusable because of slow response times and frozen dashboards is not viable. A true citizen data scientist wants to use data to follow and prove or disprove their insights and intuitions about the world they are analyzing. Data analysts can do quick data exploration and retrieve the piece of data they want.
A self-service analytics platform doesn’t mean less or no security; governance is a key prerequisite for a successful self-service analytics platform and citizen data scientist. Self-service analytics platform platforms should support authentication of the citizen data scientist with identity management solutions and Role Based Access Control to ensure that access to sensitive data such as Payment Card Industry Data Security Standard (PCI DSS) and PII (Personally Identifiable Information) is controlled and governed.
Analytics solutions depend on acquiring data from diverse systems. Given that the definitions of these data elements vary, often, there is a pressing need to offer a semantic or meaningful representation of data. Semantic models depict the relationships among specific data values. Hence, the SSA should help Citizen Data Scientists leverage a centralized semantic model so as to establish a single source of truth (SoT) for generating accurate and timely insights.
The self-service analytics platform should have an extensive library of time-tested analytics algorithms, including access to open-source libraries such as TensorFlow, Keras, scikit-learn, and more. This will make it easy for citizen data scientists to reuse existing analytics algorithms instead of building their own solutions from scratch.
Lastly, citizen data scientists will not be empowered without the right governance processes. While there is no denying that citizen data scientists are powerful, it is also just as important to recognize that the Citizen Data Scientists enablement needs to be managed with a robust governance framework. The governance framework should identify data ownership, role evaluation, training on data literacy, optimizing queries, pre-computing results, flagging unused reports and dashboards, monitoring system performance, and other regulatory and data management activities.
So, what is the solution that brings together all three components i.e., quality business data, a robust SSA platform, and a strong data and analytics governance process to enable successful Citizen Data Scientists? Kyligence provides a holistic analytics platform by securely integrating data from various data sources to create a clean (right data), integrated, and metrics store for the citizen data scientists to derive powerful insights in near-real time. Kyligence also accelerates the productivity of citizen data scientists by automating data discovery, and data integration, and offering low-code/no-code analytics libraries for seamless and secure insight generation.
In today's digital and data-centric economy, analytics is a key enabler that transforms data into a business asset by providing the insights for sound decision-making. Sadly, most analytics projects have focused on centralized data teams to offer business insights, and the result is over 80% of analytics programs have failed to provide business benefits. This approach has not only delayed the consumption of insights, it has also increased the cost of transforming insights into appropriate business actions. The future of deriving value from data and analytics is to empower citizen data scientists as it will reduce cycle time, save costs, and improve customer service for organizations. However, the citizen data scientists has to be positioned for success and such positioning requires enablement of quality data, a strong governance process, and an easy-to-use self-service analytics platform like Kyligence.
Are you excited about being a citizen data scientist and gaining insights from data? Try out Kyligence Copilot to start your journey as a citizen data scientist!
Unlock potentials of analytics query accelerators for swift data processing and insights from cloud data lakes. Explore advanced features of Kyligence Zen.
Optimize data analytics with AWS S3. Leverage large language models and accelerate decision-making.
Optimize data analytics with Snowflake's Data Copilot. Leverage large language models and accelerate decision-making.
Discover the 7 top AI analytics tools! Learn about their pros, cons, and pricing, and choose the best one to transform your business.
Discover operational and executive SaaS metrics that matter for customers success, importance, and why you should track them with Kyligence Zen.
Unlock the future of augmented analytics with this must-read blog. Discover the top 5 tools that are reshaping the analytics landscape.
What website metrics matter in business? Learn about categories, vital website metrics, how to measure them, and how Kyligence simplifies it.
Already have an account? Click here to login
You'll get
A complete product experience
A guided demo of the whole process, from data import, modeling to analysis, by our data experts.
Q&A session with industry experts
Our data experts will answer your questions about customized solutions.
Please fill in your contact information.We'll get back to you in 1-2 business days.
Industrial Scenario Demostration
Scenarios in Finance, Retail, Manufacturing industries, which best meet your business requirements.
Consulting From Experts
Talk to Senior Technical Experts, and help you quickly adopt AI applications.